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COMPUTING ALL POWER INTEGRAL BASES IN ORDERS OF 
TOTALLY REAL CYCLIC SEXTIC NUMBER FIELDS 

ISTVAN GAAL 

ABSTRACT. An algorithm is given for determining all power integral bases 
in orders of totally real cyclic sextic number fields. The orders considered 
are in most cases the maximal orders of the fields. The corresponding index 
form equation is reduced to a relative Thue equation of degree 3 over the 
quadratic subfield and to some inhomogeneous Thue equations of degree 3 
over the rationals. At the end of the paper, numerical examples are given. 

1. INTRODUCTION 

Let K be a number field of degree n with ring of integers ZK. To decide whether 
K admits a power integer basis, that is an integer basis of the form {1, y, ... ., n-I }) 

and to determine all such -y, is a classical problem in algebraic number theory. This 
problem is equivalent to solving the corresponding index form equation, which is a 
decomposable form equation of degree nr(n - 1)/2 in n -1 variables, with coefficients 
in Z. 

In [17] the author and Schulte considered index form equations in cubic number 
fields. In this case the index form equation reduces to a cubic Thue equation. 

The author, Petho and Pohst in a series of papers [10, 11, 12, 13, 14, 15] con- 
sidered the same question in quartic number fields. Finally, it turned out [16] that 
also in this case it is possible to reduce the problem of resolution of index form 
equations to the resolution of cubic and quartic Thue equations. 

The index form is reducible if there are nontrivial subfields of the number field 
in question. For fields of higher degree the resolution of index form equations is 
only feasible if the index form is reducible. For this reason, we consider now this 
problem in a class of sextic number fields. In case of sextic number fields the index 
form equation has already 5 variables and degree 15. The most intensively studied 
class of sextic fields is the class of totally real cyclic sextic fields (cf. [20, 6]). These 
fields admit also a couple of nice properties. This is the reason why first of all we 
develop a method for totally real cyclic sextic fields. In this case the field K has 
both a quadratic subfield M and a cubic subfield L, and the index form has three 
factors. 
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Remark 1. Our algorithm is in fact applicable in all sextic fields having both a 
quadratic and a cubic subfield. If the field is not totally real, the procedure becomes 
simpler. 

In order to be able to describe the factors of the index form in an appropriate 
way, we shall restrict ourselves to orders of the form 

( = Z[1, 0, 02, W, WO, W02], 

where {1, w} is a basis of M and 0 E ZK. Apart from very few exceptions (about 
2%), the sextic fields with a quadratic subfield admit a relative power integral basis 
{ 1, 0, 02} over the quadratic subfield (cf. Berge, Martinet and Olivier [2] and the 
tables of Olivier [23, 24]), which implies, that 0 is the main order of the field. The 
situation is just a little bit worse for totally real cyclic sextic fields, but also in this 
case we have 0 = ZK for almost all fields (cf. [23]). 

Remark 2. In the few exceptional cases (which occur only for large discriminants) 
we can represent the integers -y E ZK in the form 

Xo +xIO+x202 +YOW+YIWO+y2w02 
'Y = 

d 
with x0, xI, X2, Yo, Y2, y3 E 2 and with a denominator d E Z common for all -y E K 
In this case we obtain the equations (11), (12), (13) with right-hand sides fl, f2, f3, 

respectively, with fl, f2, f3 E 2 satisfying flf2f3 = ?d15 DK/ D, where DK is 
the discriminant of the field K and D is the discriminant of order 0, (cf. (1)). 
One has to consider all triples fi, f2, f3 with this property. Our method with slight 
modifications works also in this case, but the CPU time needed is much more than 
in most nonexceptional cases. 

The main goal of our method is to show that for totally real cyclic sextic fields the 
problem of resolution of the index form equation can be reduced to the resolution of 
certain Thue equations. More exactly, we obtain a relative Thue equation of degree 
3 over the quadratic subfield M. Moreover, for each solution of the relative Thue 
equation we get an equation of degree 3, in 2 dominating and 1 nondominating 
variables being of the same nature, like an inhomogeneous Thue equation. 

We remark that such inhomogeneous Thue equations were first considered by 
Sprindzuk [27]. He showed that Baker's method is applicable to equations of this 
type. The author [9] pointed out that the Baker-Davenport reduction method [1] is 
also similarly usable as in the case of Thue equations, and hence one can determine 
without difficulties the solutions of such equations. Until now, these results were 
only of theoretical importance; this is the first case in which such inhomogeneuos 
equations have found a practical application. 

At the end of the paper we list all power integral bases of the first five totally 
real cyclic sextic number fields with smallest discriminants. In all our examples we 
have 0 = ZK- 

2. PRELIMINARIES 

Let M be a real quadratic number field, with integral basis {1, w}. Let f E ZM 

be a monic, irreducible, cubic polynomial, and denote by 0 = e(1),0(2),0(3) the 
roots of f. Assume that K = Q(0O) is a totally real cyclic sextic number field. Let 

0 = Z[1,O,02,W,wo,w02]. 
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Denote by L the cubic subfield of K. Let ZK, ZM, ZL be the rings of integers of 
the number fields K, M, L, respectively. Denote by t' the conjugate of any -y E K 
over M. 

Remark 3. The field K is the composite of its quadratic subfield M and of its cubic 
subfield L. With any primitive element Q of L, {1, Q,Q2, L , WQ, WQ2} is obviously 
a basis of K. If we represent any -y E K in this basis, it is easy to see that 

(-y- x) / (w- D) E L holds. 

Let 0(4) = 0(1) 0(5) = 0(2) 0(6) = 0(3). For any -y E K denote by -y(i) the conju- 
gate of -y corresponding to 0(i). Note that the generating element of the Galois group 
of K is a, mapping any -y E K with conjugates { y = (1)I (2),?(3), (4), (5), (6)1 
onto a (-y) E K with conjugates {ay(5), y(6)," (4)," (2)," (3) ay(1)}. Obviously, for any 
y E K we have xl = a3 (y), and if -y E M, then a =(y). 

It is easily calculated that the discriminant D of 0 satisfies 

(1) v/ = ' NKIQ (0(1) _ 0(2) ) (w _ -D931 

Let X = (X1,X2,Yo,Y1IY2), define Li(X) = X10(i) + X2(0( ))2 + yow(i) + 
yiw(i)0(i) + y2W(i)(0(i))2 (1 < i < 6), and let 

Lij (X) =Li (X)-Lj (X) (1 < i, j <6, i 7j). 

The index form corresponding to the basis {1, 0 02, w, wO0,W02} of 0 is 

(2) I(X) = I(X1 IX2 IYO Iyl I 2) 4= I+ 11 Li (x). V 1?i<j?6 

Our purpose is to find all solutions of the index form equation 

(3) I(X) = I(x1,x2,yO,yl,y2) = ?1 in Xl,X2,Yo,Yl,Y2 E Z. 

This equation has only finitely many solutions (cf. [18]). An element -y E 0 
generates a power integral basis {12,, y2 Iy3, y4, 5} if and only if the index of , 

I(-y) = (Q+ : Z+.[_yD 

is equal to 1. Further, for any xoX 1x, X2, Yo, Y2, Y3 E Z the index of 

(4) y = xo + Xlj + X202 + yow + Y1lW + y2W02 

satisfies 

I(Y) = JI(Xl,X2,Yo,Y1,Y2)|. 

Hence, -y E ZK generates a power integral basis in K if and only if it is represented 
in the form (4) with an arbitrary xo E Z and with a solution (Xi, X2, yoI Yli y2) of 
(3). 
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3. THE FACTORS OF THE INDEX FORM 

In this section we split the 15 factors of the index form into 3 groups, and from 
these groups we build up the three factors with integer coefficients of the index 
form. 

I. Taking the pairs (i, j) = (1, 2), (5, 6), (3, 1), (4, 5), (2, 3), (6, 4), we can see that 
the forms Lij (X) in this group are just the six conjugates of L12 (X)). Since 

L12(X) =(0(1) _ 0(2)) (XI + (0(1) + 0(2)x2 + wY1 + w(0(1) + 0(2))Y) 

we have that the product of the six factors in this group is 

(5) NK/Q (0(1) _ 0(2)). F 

with 

(6) F1(X) NK/Q (XI + (0(1) + 0(2))x2 +Y1 +w(0(1) + 0(2))Y) 

The form F1 (X) is obviously primitive. 
II. Take now the pairs (i, j) = (1, 5), (5, 3), (3, 4), (4, 2), (2, 6), (6,i ). For these 

pairs the forms Lij (X) are just the six conjugates of L15 (X). The product of these 
six factors is again a complete norm: 

NK/Q ((0(1) _ 0(5)) X1 + ((O(1))2 _ (o(5))2) X2 + (W-W)YO 

+ (W(1) - 0(5)) y1 + (w(o(1))2 - W((5))2) y) 

This form is not always primitive. If it is primitive, take l = 1; otherwise, if the 
gcd of its coefficients in Z is d > 1, find all nonassociate integers in K of norm 
?d (using the method of [8]) and let Ol be one of them, dividing all coefficients of 
L15(X) in ZK. Then the product of the six factors equals 

(7) NKI/Q (a) F2 (X), 

with 

(8) F2(X)= NK/Q 
() (5) (())2 ((5)) 

X2+ YO 

a a a 
W0()- WO(5) w(O(1))2 - (5) 2 

+Y +) 2) 

III. The remaining pairs are (i, j) = (1, 4), (5, 2), (3, 6). In view of our Remark 3, 
for all these pairs, Lij(X)/(w - w-) has coefficients in L. Moreover, the conjugates 
of L14(X)/(w - W-) over L are exactly L52(X)/(w - W-) and L36(X)/(w - W-). This 
means that the product of the three factors in this group is equal to 

( -)3. NL/Q 
( 0 X (0(1))2 -(0(4))2 

WOM )-WO(4) w(0(1))2 -(0(4))2 
+ I W-W 

CO- Yl+ ,,, 
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The form L14(X)/(w - W) does not always have integer coefficients in L. But the 
index form I(X) has integer coefficients and therefore there must be a ,B E ZL Of 
norm INL/Q(/3)j = INK/Q(ae)l (to find such an element, test again the nonassoci- 
ated integers in L of norm ? INK/QQ(a)l obtained by the method of [8]) such that 
BL14(X) I (w - W) admits integer coefficients in L. Hence, the product of the three 

factors in this group is equal to 

(9) NL/Q(() -3(X) 

with 

(10) F3 (X) NL/Q ( X + /((Q(1))X2 + )YO 

+ (wO(1)W - Q0(4)) /3(W(0(1))2 _(0(4))2) 

w-w w 

In view of (1), (2) and INL/Q(/3)I INK/Q(al)l we conclude that the index form 
equation (3) is equivalent to the system of equations 

(11) F1 (xI,X2,YI,Y2) = ?1, 

(12) F2(xl,x2,yo,yl,y2) =?1 in X1,X2,Yo,YI,Y2 E, 

(13) F3(xi,x2,yo,iY,Y2) = ?1, 

with the above F1 7F2, F3 EZ [XI, X2, Yo, Y1, Y2] 

4. A RELATIVE THUE EQUATION OVER THE QUADRATIC SUBFIELD 

We consider now the first equation (11) of the above system. In view of (6) it 
can be rewritten as 

NK/Q((X1 + WYI) + (0(1) + 0(2))(X2 +wY2)) =?1 in Xl,X2,YO,Y1,Y2 E Z 

The element Q = 90() + 0(2) E K is of degree 6, x = xi + wy1 and y = X2 + WY2 are 
in EM. Then the equation is equivalent to 

(14) NK/Q(x+Qy)=?1 in x,yCE7/M. 

Denote by It the fundamental unit of M with , > 1. Then (14) implies 

NK/M (X + QY) = ?It 

with some s E Z. Taking s = 3q + r, with q, r E Z, 0 < r < 3 and x' = xp-7, y' = 
y,p I, we get 

(15) NK/M(XI + Lo = ?/ in xl, y E ZM. 

For a fixed r this equation is a relative Thue equation over M. It is well known 
that such an equation has only finitely many solutions. This means that equation 
(14) can be reduced to three (r = 0, 1, 2 in (15)) relative Thue equations. 

We show that by analyzing equation (14) in a proper way we can find all x = xi + 
WYI, y = X2 + Wy 2 E ZM, such that all solutions of (14) are of the form ?Asx, ?A/y 
with some s E Z. The cases r = 0,1, 2 can be dealt with simultaneously; only one 
solving procedure is needed. 

We remark that recently de Weger [31] also solved a relative Thue equation over 
a quadratic field by somewhat different methods. 
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4.1. Fundamental units. Denote by r a unit in the cubic subfield L such that 
{r, ( -r) } forms a fundamental system of units in L. (Such a r always exists, cf. 
[20].) The system {,u, r,7 -3) } can always be extended to a fundamental system of 
units in K ([20]). 

Equation (14) can always be reduced to a unit equation in two variables over 
K (see [7]). In our case, since we deal with relative conjugates over M, the factor 
corresponding to ,t cancels, and the units in this unit equation have 4 factors with 
unknown exponents. There is a well-known constructive method to analyze such 
unit equations (cf. [11]). 

However (see [20]), in about 95% of the totally real cyclic sextic fields there 
exists a unit ( such that {,u1,r, 5(3), ,, (5) } is a fundamental system of units in K. 
(Exceptions occur only for very large discriminants.) Such a system of fundamental 
units makes the formulas very much simpler (cf. also Remark 4 in ?4.4), and ideas 
of this type may be fruitful in some other applications, too. For this reason, we 
assume in the following that {,u, r, 5(3), ,, (5) } is a system of fundamental units in 
K, and we develop our method in detail under this condition. 

Lemma 1. Let u, -r, , be as above. If {,, -r, ,(3), (5) } is a fundamental system of 
units in K, then the same holds for {I, r, r(3), ,((3)}. 

Proof. We have 

(16) NK/M(() = - 

with a t E Z. On the other hand, 

NK/L (() = -((4) = ra(,r(3))b 

with suitable a, b, E 2. This implies 

(2),(5) = i(r(2))arb = * (r1)ab -,rb-a (,(3)a 

whence 
8,(5) = ?(E(2))-1,rb-a (,r(3))-a 

Combining this expression with (16), we obtain 

,(5) = ?,j(3),rb-a(,r(3))-aM -t 

which implies the assertion. 

4.2. Application of Baker's method. Let x, y E ZM be an arbitrary but fixed 
solution of (14). Let 3 = x + gy. Obviously, 

(17) 3= (,r ( ) ( (3 ) d 

with l,a,b,c,d E Z. 
We use the identity 

(Q(1) - Q(2)) (3) + ((2) _ Q(3)) o() + (Q(3) _ g(1)) 3(2) = 0 
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to get 

(18) ~ ~ ((1) _ 9(3)) 0(2) 
(e() - (2)) 0(3) 

(0(~~~3) - Q(2)) p(l) + T(3) _ (2)) '3(l)- 

From 
- ?1 and ((2)((3) 

(cf. the proof of Lemma 1) and (17) we conclude 

(19) 03(2) = T b-2a(r(3))-b-aQd-2c(Q(3))-d-c tc| 

(20) = |,a,b ?3 4dl, 

with 
1 1T _ t_ _ 

61 = 72T(3) 
' 62 = 

r(3) X 63 = 
424(3)' 64 (3) 

It follows from (19) that E1,62,E3,64 are multiplicatively independent. Similarly, 
we obtain 

|3|3= -a-b(r(3))a-2bf-c-d(4(3))c-2d 

(21) = 1n7R717374R 

with multiplicatively independent 

r(3) 1 .(3) _ t 

?71 -, = r 72 = {r(T(3))2 773 = '4 (3))2 

Set - = 3(3)/O. Denote by 7I) the conjugate of -y with 

(22) log(-y(')) max I log(-y(i)) . 
1<i<6 

We have 

(k)(k(I1<kk<I6).lo log |7k)| a log |I() + b log | n(k) I o nk + d log 1|7(k)| (1 < k < 6). 

Consider this system as a system of linear equations in a,b,c,d. Since the Tb 
are multiplicatively independent, taking any 4 of the indices 1 < k < 6 in the 
above system of equations, the matrix M of the system of equations is nonsingular. 
Choose the 4 indices such that the row norm of M-1 become as small as possible. 
Denote this value by cl. Then (22) implies 

H = max(lal, lbj, icl, idj) < cl I log 1y'() Il, 

whence 
I log l-Ya(I I , H 

Ci 
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This, in view of 

6 

(23) Elog 1PY(k) I = O 
k=1 

(holding because -y is a unit in K), implies in turn that there exists a conjugate y(i) 
of -y with 

(24) log y(i) I < -H 

Take now the conjugate (.)(i) of all terms in the equation (18). (Note that in the 
course of the computation one has to consider all possible values for i.) From (24) 
we conclude 

(25) (?(i)) (6(i))b (i) (i)) (i) -1 ? c2exp ( 

with 
Q(3) - (l) (Q() - (2) 

?5= a(3) _(2) 
and C2 (3) - (2)) 

In view of the inequality 

(26) 1 logtI < 2It - 11, which holds for any real t with it - 11 < 0.795, 

(25) implies 

A = a log Ej ) + b log E ) + c log E ) + d log E ) + log E ) 

(27) < 2c2exp (-4 ), 

where it is assumed that 

(28) H >-5c1 log 0.7 = C3. 
C2 

We now wish to give a lower bound for the linear form A in (27) in terms of 
H by using Baker's method. We observe that E5 is multiplicatively dependent on 
E1, ?2,?3,64 (which are independent). We have 

log ?51 = 
= -log I6, I + -log |621 + -log |?31 +-log 1|41 v 

with suitable integers ao, bo co, do, m. (In our examples we always had m = 3.) Set 

(29) a =ma+ao, b=mb+bo) c-=mc+co, d=md+do 

and 
Ho = max(laol, lbol, Icol, Idol), H = max(la-l, bl, Ic-1, Idl). 
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Then H < mH + Ho, whence 

(30) H > H H 

and inequality (27) becomes 

A = -a log El) + blog E2 + c log E3) + dlog |() 

(31) < AB-H, 

with 

A = 2mc2exp ( o) and B = exp( ). 
5mc, 5mc, 

We used the inequality of Corollary 2 of [3] (see also [4]) to obtain a lower bound 
of type 

(32) exp(-W(log H + C)) 

for A. Combining this lower bound with (31), we obtain an upper bound HB for 
H. In our examples the upper bound was between 1044 and 1046. 

4.3. Reduction of the bound. The next step is to reduce the bound HB for H. 
For simplicity set -yj = E?j) for 1 < j < 4. Consider the lattice F spanned by J 

the columns of the matrix 

1 0 0 0\ 

(33) r= ( ) 

K[C-ft] [C-N] [CN3] [C-N] 

where [.] denotes the nearest integer and C is a constant to be determined later. 
Reduce the basis (33) of the lattice F by the LLL-reduction algorithm (cf. [19]). 

Denote by b1 the first vector in the reduced basis. The assertions (i) and (ii) of the 
following lemma are special cases of Lemma 3.7 of [30] and of Proposition 3.1 of 
[28], respectively. 

Lemma 2. (i) If 

(34) 2 > 3HB 

and a, b, c, d E Z is a solution of (31) with H = max(a, Ib, c, dl) < HB, then 

- log C + log A - log HB 
(35) HI< logB 

(ii) if H, is a positive constant, 
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and a, b,c,d E Z is a solution of (31) with H = max(lal, ibj, ijc, idl) < H1, then 

_ log C + log A-log (2 3H12-4Hg 

(37) H < -log B 

In the first reduction step it is advisable to use the simpler statement Lemma 2 
(i). Set C = HI. Then C is large enough to expect that (34) is satisfied. By (35) 
we get a reduced bound H1 for H, which was in our examples between 5000 and 
9500. 

In the second and further reduction steps, usually Lemma 2 (ii) is applied, in 
order to get more exact estimates. We set H1 to be the bound obtained in the 
preceding reduction step. If we take C = Hl, inequality (36) usually holds, but in 
order to get a better reduced bound, we try to diminish the value of C as much as 
possible. After the first reduction step, the bound ft1 is not so extremely large like 
in the first step, hence the LLL-reduction of the lattice r requires only a negligible 
computing time, and therefore it is worth making some trials to obtain a better 
bound. For this purpose, we find the smallest h such that with C = 1oh, (36) is 
satisfied. 

In our examples we reduced the bound H3 in 4 steps and finally obtained a bound 
between 400-1100. A typical sequence of the bounds is, e.g., 1045, 5214,662,530, 
524. Note that in our examples we had 0.69 < A < 160,5.4 < B < 11.4. 

We have to use Baker's method and perform the reduction for all possible values 
1 < i < 6. Denote by HR the maximum of the reduced bounds obtained for 
1 < i < 6. 

We end this subsection with calculating the bound for H implied by the reduced 
bound for H (cf. (29)): 

H = max(lal, Ibl, Icl, Idl) < HR = HR+ Ho 
m 

This bound usually also satisfies HR > C3 (cf. (28)). In our examples, HR was 
between 171 and 359. 

4.4. Testing over the remaining set. Consider again equation (18). In view of 
our notation it can be rewritten as 

(38) ab16 dE5 + 1 - ?ab77c77d775 

with 
5 Q(l) - Q(2) 

75 g Q(3) - Q(2) 

Remark 4. The main advantage of our choice of fundamental units (cf. ?4.1) is that 
at this step we have an equation (38) with the same exponents on both sides. 

The bound HR is too large to test directly all possible values of a, b, c, d with 
absolute values below HR. For this reason, we apply a sieve method. We remark 
that a similar test is used in [29]. The idea is that we embed ( into Zp for a prime 
p. To perform the embedding, one merely has to embed 0 and w, which induces 
the embedding for any element in 0. First we represent w in the form 

Z5-O gi@ 

gd 



POWER BASES IN TOTALLY REAL CYCLIC SEXTIC FIELDS 811 

with integers gi (O < i < 5), gd. Then, if the prime does not divide gd, we can 
easily calculate the image of w from the image of W). 

We determine primes P1, P2,... such that 
* The minimal polynomial of 0 over Q splits into linear factors mod pi, 
* pi does not divide the discriminant D of (, and 
* pi does not divide gd. 
Then we can compute integers ejiI fii with the property 

?j -eji (mod pi) (I < j < 5), 

r7j-fji (mod pi) (1 < j < 5), 

with a prime ideal pi lying above pi. Then equation (38) becomes 

(39) ?e'lie b c d 1 + 1-Afi jf2bf3cjf4df5i (mod pi). 

We test all possible exponents (a, b, c, d) mod (P1 - 1). If a tuple (ao, bo, co, do) is 
a solution of (39) mod pi, then we generate all possible a, b, c, d such that 

a-ao, b-bo, c=-co, d_ do (mod (pi-1)), 

and 
max(lal, ibi, cli, Idi) < HR. 

For all thoese possible tuples (a, b, c, d) we test (39) modulo P2 and the surviving 
tuples modulo p3 etc. After about the fourth test the set of possible solutions does 
not reduce any more and the tuples in this set are usually solutions of (38) as well. 

The first sieving step requires a considerable CPU time (about 3 hours) and 
produces a huge amount of possible solutions. This is the reason why it is worth 
storing the possible tuples only after the second sieving step, which is already much 
faster. The third and further steps require only a negligible amount of CPU time. 
The primes we used in our examples were all less than 350. 

For all solutions (a, b, c, d) of (38) we calculate /3 = ra (T(3))bec(&3))d (cf. (17)). 
We can decide, whether there exist x, y E ZM such that 

, x + y. 

If so, then all solutions of (14) corresponding to (a, b, c, d) are of the form 

(40) xl + WY1 = ?[ttx, x2 + wY2 = ?,ny, 

with x1, Yi, x2, Y2 E Z depending already only on the unknown n E Z. 

5. INHOMOGENEOUS EQUATIONS IN TWO DOMINATING VARIABLES 

By (40) we express x1, Yl, X2, Y2 to get 

n - (-)nl~ 

= ? XTy-(ft)ThX 

lany - _)n 
(41) Y2 = - y 
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In the following we have to determine n (which fixes also the values of x1, YI, X2, 

Y2 up to sign) and yo of (3). For this purpose we use equation (13). 
Substituting the values of (41) into (13), we obtain an equation of the form 

3 

(42) 17 (Ak,u + Bk(ft) + CkyO) = ?1, 
k=1 

with explicitly known algebraic coefficients Ak, Bk, Ck E K (1 < k < 3). 
We consider this equation in detail only for n > 0. The opposite case of n < 0 

is similar by interchanging the roles of Ak and Bk. 

If n > 0 then in (42) the dominating variables are ,-Ln and yo, and the value of 
(ft)n is "small" compared to the dominating variables. (We recall that we defined ,u 
with p, > 1.) The structure of this equation is very similar to that of an inhomoge- 
neous Thue equation considered in [9, 27]. In many respects the situation is much 
simpler, because, except for small n > 0 (which values can be tested separately), 
the value of (ft)tm can be bounded by a quite small constant. 

5.1. Baker's method. The factors of F3 in (13) have algebraic integer coefficients 
and the right side of (13) is ?1, hence 

(43) v(k) = Ak,u~ + Bk(I)n + Ckyo = ?(6(k))a(6(k))b (1 <k ) 

with a, b E Z, where for simplicity we take 61 = , 62 = -(3) 

We fix a small value ,ao and determine the smallest no (> 0) such that for 
n > no 

(44) ,nj> 1 

In our examples we took Mo = 10-4. In the course of our considerations below 
we shall require to increase no if necessary, so that for n > no the value of A7n is 
larger than certain constants. We remark that by taking /-to = 10-4 the value of 
no was essentially determined by (44). The values of n with 0 < n < no must be 
considered separately. Using /-to = 10-4 requires testing about 10 values n. For all 
fixed n, equation (42) is a cubic polynomial equation in yo. 

Denote by i the index with 

(45) |v( I = min Iv(k) |. 

Obviously, 

(46) I KvI < 1. 

(In the course of the computation one has to consider all possible values for i.) We 
have 

(47) Yo1 ? v(i)I + lAil_tn + lBil,uo < cljAil_tn 

with 
(71 = 1.1 1AAIl 
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assuming that 

(48) ,un > 10 (I + ?Bi to). 

For k =A i, by (46) we obtain 

|Civ(k) I> ICV(k) -CkV(i)I-_CkV(i)I 

? CCiAk - CkAi 1_,n_ -CiBk - CkBi Iuo - ICkI 

> 0.9|C2Ak - CkAi 1_n 

if 

(49) A n > l~CiBk - CkBill-uo + ICkl 
( ) 8 > O ~~l|CiAk -CkAil- 

The above inequality implies 

(50) IV(k)I > c2(k),utn (k 7 i) 

with 

C2(k) - 0.91CiAk - CkAil (k 4 i). 

It follows from (50) that 

(51) V(k) > 1 (k74i) 

if we assume that 

(52) Ln > k (k74i). 

Consider now the equations 

log IV() 1- alog 16(k) I + b log 16 k) I for 1 < k < 3, k 7i, 

as a system of linear equations in a, b. Denote by C3 the row norm of the inverse of 
the matrix of this system. Then in view of (47) and (51) we conclude 

(53) H = max(lal, bl) < C3maxlogIv(k)I < C3(10gc4 + log _ttn) 

with 
C4 = max(|Ak| + ClCk| + 0.01), 

k#Ai 

assuming that 

(54) A n > 100/to max IBk I k#&i 
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Set now {j, k} = {1, 2, 3} \ {i} Then equation (42) can be rewritten as 

v (1 V (3 )V1,(k) 

whence by (50) we get 

(55) < 1 1 
-2n 

VW Vk) -C2 (j) C2(k) 

In this inhomogeneous case, Siegel's identity becomes 

(C2AJ- C3Aj)V(k) + (CjAk- CkAj)u(t) + (CkAi - CIAk)u' = ())Vx3 

where 

X Bk(CtA3- CJA2) + BH(C3Ak- CkA3) + B3(CkAi - C2Ak). 

Let C5 = KXL By (55), (50) and (53) this identity implies 

(56) 

(CiAJ-CJA)/k) C < CkA3 - C3Ak V (') _ _+ C51_ _ _ 

(C2 Ak- CkA2)V(J) 1? C2Ak - CkAi | |(3) I (CiAk- CkAI)V(3)1 

< C6A + C7/ ? (C6,Uo + C7) exp (-2 log ,u ) 

2HA 
< exp - 1 )- 

with 
_ CkA3 -C3Ak 1 

CiAk- CkA2 C2(j)2c2(k)' 

C CAk CkA2 c2(i) and C8 log(c6AO + C7) + 2log C4. 

Using again inequality (26), we see that our estimate (56) implies 

CIA - +aA &(k) 6(k) 
__ (57) A= Aog -Ca A o + blog < ex 2H A log C2Ak - CkA + () + () - Px( 8 C3 I' 

assuming that 

(58) Cn> /iLt + C7 
0.795 

Now we have to distinguish between two cases, according as 

(59) C2A3 - C3A, 
C?,Ak - CkA?2 

is multiplicatively independent of 

(60) 6(k) and (k) 
or n Io c ui bh sh fr2 

or not. In our computations both cases have frequently occurred. 
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5.1.1. The case of independence. In case the expression (59) is multiplica- 
tively independent of the terms in (60), we can use Baker's method (Corollary 2 
of [3]) directly to the linear form A in (57) to obtain a lower bound of the form 
exp(-W(log H + C)) for A. Comparing this lower bound with the upper bound in 
(57) for A, we conclude with a bound HB for H. In our examples HB was between 
1030 and 1032. 

5.1.2. The case of dependence. In this case we proceed similarly as in ?4.2. 
There exist ao, bo, m E Z such that 

CiAj - CjAi a0 &(k) bo &(k) 
log log +-log 2 

C,jAk - CkAi -r 6(i m 6(i) 
1 ~~~~2 

(in our examples we always had m = 3). Set 

(61) a = ma+ao, b =mb+bo 

and 
HO = max(Caol, lbol), H = max(la-, Ibl); 

then H < mH + Ho, whence 

(62) H > H-Ho 
m 

With this notation, (57) becomes 

6(k) &(k) 2' 
(63) A= alog . +blog ? c9exp - -), 

1 ~~~~2 
with 

C9 = 2mexp (C8 + 2H0. 
mC3 

We apply now Corollary 2 of [3] in the two variables case. Comparing the lower 
bound of type exp(-W(log H + C)) for A with (63), we conclude H < HB. In our 
examples HB was between 1021 and 1023. 

5.2. Reduction of Baker's bound. We use different methods for the reduction 
procedure in the cases of independece and dependence. Note, that these reduction 
algorithms can also be developed by using lattices and ideas similar to those used in 
?4.3 (cf. [30]). We follow here a more traditional way, using the continued fraction 
algorithm. 

5.2.1. Reduction in the case of independence. Inequality (57) implies 

(64) laq+ b-)j<ABH, 

with 

log -log DC,A 
(k) 8(k) 

log i2 log 5(2 

and 

A= 12expC8 B=exp(2). 
log 62 k) 

26) 

We apply now the Baker-Davenport Lemma [1] in a slightly modified form (cf. 
Lemma 2 of [9]) to inequality (64): 
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Lemma 3. Let C, D be positive constants. If there exists q E Z such that 

(65) 1 < q < CD, 

(66) llqq l CD ' 

(67) flq4)j > D? 

then inequality (64) has no solutions a, b, E Z with 

(68) ~~~~~~log (CD 2A)<HK, 
(68) log B 

< H < 

where H = max(lal, Ibl) and 11 1f denotes the distance from the nearest integer. 

We use this lemma with C = HB and D = 100 or 1000. Applying the continued 
fraction algorithm to 0, one can compute a q satisfying (65) and (66). The same 
q usually also satisfies (67), because here we are in the case of independence. In 
the next step, C is the bound obtained in the preceding reduction step. Applying 
the lemma about 4 times (until the bound does not diminish any further), we get a 
reduced bound for H, which was below 35 in our examples. Note that it is usually 
possible to reduce this bound further by testing (64) for the pairs below the reduced 
bound. 

One has to apply Baker's method and the reduction algorithm for all possible 
values of i (1 < i < 3). Let HR be the maximum of the reduced bounds obtained 
for i = 1,2,3. 

5.2.2. Reduction in the case of dependence. In this case, from (63) we have 

(69) laq + bV$l < AB-, 

with 
&(k) &(k) 2__ 

q l=og l, og 2 A = cg, B = exp(). 

Our reduction method used in this case is again based on the continued fraction 
algorithm. 

We assume that 1X1 < 4j; the opposite case 1 > I+I can be considered similarly 
by interchanging the roles of a, 0 with b, Vb, respectively. First we consider only the 
coprime solutions ((a, b) = 1) of (69); we shall show that from that case one can 
easily obtain all solutions of (69). The case -a = 0 being trivial, we may also assume 
- 4~0. a 7 

Denote by pi/qi the convergents in the continued fraction expansion of X = 

-0/qb, and by ai the corresponding partial quotients, satisfying Pi+1 = aipi + 
Pi-1, qi+1 = aiqi + qi-l for i > 0 (cf. [21]). We use the following lemma (see [5] 
for its basic idea): 

Lemma 4. Assume that for X = -0/0 we have lXI < 1. Let C be a positive 
constant, denote by mo the index with qm0-i < C < q0,, let 

Amax = max ai, 
i<MO 
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and set 
E = min(|xl, 1 - xl) 

Then, if a, b c Z is a solution of (69) with -a 7 0, (a, b) 1, and H max( al, Ibl) < 
C, then H satisfies one of the following inequalities: 

(70) BH < A 

(71) B < JAH, 

(72) BH < A(Amax + 2)H 

Proof. We have 

(73) ? X-a < 1 AB-H< ABH a a N) 

If the right side of the above inequality is < , then H I -al; in the opposite case, 
(70) holds. Assume that H is large enough, and therefore H = Ial. Again, either 
(71) holds, or we have 

b 
1< IAB-H < 

1 

By (a, b) = 1 this implies that b/a is a convergent p,/qi in the continued fraction 
expansion of X/ It follows by (a, b) 1 that b ?pi and a = ?qj with i < mo -1, 
hence (cf. [26]) 

1 1 ~~~~~~~~b 1 

(Amax + 2)qi - (aj?i + 2)q X~ a - NAB 

which implies (72). 

We use Lemma 4 in the first reduction step with C = HB. The inequalities of 
Lemma 4 imply that either H is small (cf. (70), (71)), or in view of (72), we can 
reduce the bound for H. In the next step we proceed by taking the reduced bound 
for C and we repeat the reduction until it does not diminish the bound any further. 
Usually, the reduced bound is below 10 already after the first reduction, and 2-3 
reduction steps are sufficient. 

By the inequality 
b I _ 

X 
< 
?-AB-H 

(cf. (73)) it is obvious that if a pair (dac, db) with (a, b) = 1 is a solution of (69), 
then so also is the coprime pair (a, b). Lemma 4 makes it possible to determine the 
coprime solutions of (69). If, in addition, the corresponding pair (da, db) were also 
a solution of the inequality, then we would have 

b db 1 
x--< K A dH 

a dU -a 10 
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with H = max(la1, Ibl), which implies 

dj < H log A -log I V) log |X-- |) 

This bound for d is usually very small (< 5). For all values of d satisfying this 
inequality, the pairs (da, db) should be tested together with (a, b). If some of them 
are solutions of (69), then the reduced bound should be increased if necessary to 
be at least as large as max(ldal, Idbl). We remark that usually these calculations 
do not effect the reduced bound. 

One has to use Baker's method and apply the reduction algorithm for all possible 
values of i (1 < i < 3). Denote by HR the maximum of the reduced bounds 
obtained for i = 1, 2,3. From (61) we obtain 

(74) max(|a|, Ibl) < HR = HR Ho 
m 

5.3. Testing small solutions. In the preceding sections we applied Baker's 
method and the reduction algorithm both in the case of independence (cf. ??5.1.1 
and 5.2.1) and in the case of dependence (cf. ??5.1.2 and 5.2.2). Finally, we obtained 
a relatively small bound HR for H. 

Recall now the system of equations (43). In view of max(lal, Ibl) < HR, it implies 

(75) |Ak,ut + Ckyo1 < Tk (1 < k < 3), 

with 

(a 16(k 1, 1/16(k)) I a 1|6(k) 1 1/16(k) I HR l Tk ( max (k1k~ i/5k1 max (2~k~ 2/?)) + lBk~Io (1 < k < 3). 

This in turn implies a bound n < No for n. Moreover, we also have to test the 
values of n with n < nO (cf. ?5.1). This means that in the case n > 0 we have to 
test the values of n with n < max(No, no). 

Usually, No < no and, as we remarked in ?5.1, it is required to test about 10 
values of n. For all fixed n, equation (42) is a cubic polynomial equation in yo with 
coefficients in Z, and it is easy to decide if it has integer solutions in yo. 

6. COMPUTATIONAL ASPECTS 

The computations were done partially on a HP 9000/433s workstation and par- 
tially on an IBM PC 486 AT compatible computer. 

Baker's bound for the relative Thue equation (?4.2) was about HB = 1045. In 
the first reduction step (?4.3) we used Lemma 2 (i) with C = HB, hence we had to 
use 200 (decimal)-digit numbers. The first reduction step took about three minutes 
on the HP workstation, the further steps were much faster. 

Most CPU time was needed for testing the exponents a, b, c, d with 
max(I a, Ibi1, 1 cdl) < HR (?4.4). The test of about 108 tuples in the first siev- 
ing step took about three hours on the PC, and reduced the number of tuples to 
about 106. The second step needed only a few minutes, and we obtained about 104 
surviving tuples. The further steps took only a few seconds. 

For all solutions of the relative Thue equation we had to solve an inhomogeneous 
equation in two dominating variables (?5). The complete resolution of such an 
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equation (calculating Baker's bound, the reduction procedure, and the test of small 
solutions) took about a minute on the PC. In the reduction procedure of these 
equations we used 100 (decimal)-digit numbers. 

7. NUMERICAL RESULTS 

We computed all solutions of the index form equation (3) in the first five totally 
real cyclic sextic fields with smallest discriminants. The discriminants and the 
coefficients of the polynomial f E ZM were taken from [2]. The fundamental units 
of the fields K are from the tables of [20]. All other input data were computed by 
using the algorithms of the KANT package [22]. 

In all our examples, 0 = ZK, and.D = DK is the discriminant of K. Hence the 
results give all power integral bases of ZK. 

It is clear from the tables of [25] that the fields with discriminants 300125, 
371293, 453789 and 1075648 admit power integral bases. In case of the field with 
discriminant 820125 the generating element given in [25] has index > 1, but also in 
this case we found several solutions of the index form equation, that is, elements 
with index 1. 

In our table we list the discriminant DK of K, the quadratic field M, the element 
w such that {1, w} is a basis of M, and the polynomial f E ZM. Finally we list 
the solutions (x1, X2, yo, YI, Y2) of the index form equation (3) corresponding to the 
integer basis {1, I, I02 w, wO, W02} of K. If (X1, X2, yoI YlI Y2) is a solution of (3), then 
so also is (-x1, -X2, -Yo, -Yl, -Y2), but we list only one of them. 

I. DK = 300125, M = Q(V5), w = f (t) t3 (7 + 7w)t + (7 + 14w) 

XI X2 Yo Yi Y2 X1 X2 Yo Yi Y2 

-71 68 66 44 -42 -2 1 4 -2 0 
-61 73 88 38 -45 -2 2 1 1 -1 
-12 11 13 7 -7 -2 3 4 1 -2 
-11 13 15 7 -8 -2 3 5 1 -2 
-10 -5 4 6 3 1 -1 -5 0 1 
-6 6 9 3 -4 1 -1 -4 0 1 
-6 6 10 3 -4 1 -1 5 -2 0 
-5 4 9 2 -3 1 1 -15 3 1 
-5 5 5 3 -3 1 1 -5 1 0 
-4 3 4 2 -2 1 2 -1 0 -1 
-4 3 5 2 -2 2 -1 -5 0 1 
-4 4 9 1 -3 2 -1 -4 0 1 
-4 5 5 3 -3 3 -1 -13 2 2 
-3 2 9 0 -2 8 5 -88 15 6 
-3 2 10 0 -2 10 4 -66 17 6 
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II DK = 371293, M = w +VT, f (t) = t3 wt2?+(-10+5w)t+(2-w) 

xl X2 Yo Yi Y2 Xl X2 Yo Yi Y2 

-499 284 121 -383 218 -11 7 5 -9 5 
-456 241 136 -350 185 -9 4 3 -7 3 
-99 56 24 -76 43 -9 5 2 -7 4 
-82 43 25 -63 33 -8 4 2 -6 3 
-46 26 11 -35 20 -8 4 3 -6 3 
-43 43 8 -33 33 -7 4 2 -6 3 
-42 22 12 -32 17 -6 4 1 -5 3 
-31 17 9 -24 13 -6 4 2 -5 3 
-22 13 5 -17 10 -4 1 1 -2 1 
-17 9 4 -13 7 -4 4 1 -3 3 
-17 9 5 -13 7 -1 1 1 -2 1 
-17 13 4 -13 10 -1 2 1 -3 1 
-16 9 3 -12 7 0 1 5 -1 0 
-16 9 4 -12 7 1 0 0 1 0 
-15 8 4 -11 6 4 4 24 -3 -1 
-14 8 4 -11 6 6 -2 0 -1 0 
-14 8 5 -11 6 10 2 1 -4 -1 

III. DK = 453789, M = Q(21),wg = 1+V-, f(t) = t3 -Wt2+(_- 1+W)t+ (-3+w) 

Xl X2 Yo Yi Y2 Xl X2 Yo Yi Y2 

-52 25 4 -29 14 -1 4 3 0 -1 
-43 16 13 -24 9 0 -1 0 1 0 
-12 7 2 -7 3 0 1 0 0 0 
-11 5 4 -6 2 1 -2 -1 1 0 
-9 9 1 -5 5 1 0 0 0 0 
-8 -3 2 3 1 1 1 1 1 -1 
-7 3 0 -4 2 1 2 3 0 -1 
-5 1 1 -1 1 2 -1 -1 1 0 
-5 2 2 -3 1 2 -1 0 1 -1 
-5 3 2 -3 1 2 1 1 1 -1 
-4 1 0 -2 1 3 -2 0 2 -1 
-3 14 12 1 -5 4 3 4 1 -2 
-2 2 2 -1 0 5 17 20 -2 -6 
-1 2 0 -1 1 
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IV. DK =820125, M = Q(v/), =1+V, (t)= t3 + (-6 - 6w)t + (6 + llw) 

Xl X2 Yo Yi Y2 Xl X2 Yo Yi Y2 
-10 8 4 6 -5 1 2 -8 2 0 
-4 3 2 2 -2 2 -4 -10 0 3 
-4 11 16 2 -7 2 -1 -12 2 2 
-1 0 0 1 0 2 -1 -4 0 1 
-1 1 3 0 -1 2 0 -9 1 1 
-1 1 5 0 -1 2 0 -7 1 1 
0 -2 8 -3 0 2 1 2 -2 -1 
0 0 -2 1 0 3 2 -26 5 2 
0 0 8 -2 -1 3 2 -22 6 2 
1 0 -4 2 0 6 3 0 -4 -2 
1 1 -5 1 0 8 4 -68 13 6 
1 1 -3 1 0 9 4 -60 15 6 

V. DK = 1075648, M= Q(7/7),w =N/7, f(t) t3 _ Wt2 + w 

Xl X2 Yo Yi Y2 Xl X2 Yo Yi Y2 
-6 -2 1 2 1 3 -5 2 2 -1 
-6 2 1 -2 1 3 5 2 -2 -1 
-3 0 -1 0 1 5 -8 4 2 -3 
1 0 0 0 0 5 8 4 -2 -3 
2 -4 1 1 -1 11 -10 7 4 -4 
2 0 2 0 -1 11 10 7 -4 -4 
2 4 1 -1 -1- 
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